- 6. [9 points] For each of the following questions, circle all answers that must be correct.
 a. [3 points] Circle all true statements. The integral ∫₀[∞] 1/(√x + x²) dx
 i. diverges because 1/(√x + x²) > 1/(2√x) for 0 < x < 1.
 ii. diverges because 1/(√x + x²) > 1/(2x²) for 1 < x < ∞.
 iii. converges because lim 1/(√x + x²) = 0.
 iv. converges by p-test with p = 2.
 v. None of these.
 - **b.** [3 points] Consider a geometric series with n^{th} partial sum S_n , where $\lim_{n \to \infty} S_n = \frac{5}{1 0.3}$. Which of the following statements must be true?
 - i. This geometric series must converge.
 - ii. The first term of this geometric series must be 0.3.
 - iii. The common ratio of this geometric series must be 0.3.
 - iv. This geometric series may or may not converge; it cannot be determined.
 - v. None of these.
 - **c.** [3 points] The series $1 \frac{1}{3} + \frac{1}{2} \frac{1}{3^2} + \frac{1}{2^2} \frac{1}{3^3} + \frac{1}{2^3} \dots$
 - i. converges by the Alternating Series Test.
 - ii. diverges because the Alternating Series Test does not apply.
 - iii. neither converges nor diverges.
 - iv. converges because it is a geometric series with common ratio of magnitude less than 1.
 - v. converges because the terms converge to 0.
 - vi. None of these.