- **7**. [10 points]
 - **a.** [5 points] Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^2(2n)!}{2^n(n!)^2} x^{2n}$.

Answer:

- **b.** [5 points] You do not need to justify your answers below. Suppose C_n is a sequence such that the following are true:
 - C_n is a monotone decreasing sequence
 - C_n converges to 0
 - $\sum_{n=0}^{\infty} C_n$ diverges
 - $\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n}$ has radius of convergence 4.

What is the center of convergence of $\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n}$?

Answer:

What are the endpoints of the interval of convergence of $\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n}$?

Answer: Left endpoint at a =

Right endpoint at b =

Let a and b be the left and right endpoints of the interval of convergence you found above. Which of the following could be the interval of convergence of $\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n}$?

- [a,b]
- (a,b]
- (a,b)
- [a,b)