7. [10 points]

a. [5 points] Determine the radius of convergence of the power series \(\sum_{n=0}^{\infty} \frac{n^2(2n)!}{2^n(n!)^2} x^{2n} \).

Answer:

b. [5 points] You do not need to justify your answers below.

Suppose \(C_n \) is a sequence such that the following are true:

- \(C_n \) is a monotone decreasing sequence
- \(C_n \) converges to 0
- \(\sum_{n=0}^{\infty} C_n \) diverges
- \(\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n} \) has radius of convergence 4.

What is the center of convergence of \(\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n} \)?

Answer:

What are the endpoints of the interval of convergence of \(\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n} \)?

Answer: Left endpoint at \(a = \)

Right endpoint at \(b = \)

Let \(a \) and \(b \) be the left and right endpoints of the interval of convergence you found above. Which of the following could be the interval of convergence of \(\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n} \)?

\([a, b] \quad (a, b] \quad (a, b) \quad [a, b]\)