- 1. [12 points] The parts of this problem are unrelated. You do not need to justify your answers.
 - a. [6 points] For each of the following sequences, defined for $n \geq 1$, decide if it is bounded, if it is increasing or decreasing, and whether it converges, and circle your answers. If it converges, find the limit.

i.
$$b_n = \frac{2n + e^{-n}}{5n}$$

Bounded

Increasing

Decreasing

Diverges

Converges to

2/5

ii.
$$c_n = \sin(n)$$

Bounded

Increasing

Decreasing

Diverges

Converges to _

iii.
$$d_n = \sum_{k=1}^n \frac{3}{k}$$

Bounded

Increasing

Decreasing

Diverges

Converges to _

b. [3 points] Write the following series using sigma notation:

$$2^{3}(x-e)^{4} + 3^{3}(x-e)^{6} + 4^{3}(x-e)^{8} + \dots$$

Answer:
$$\sum_{n=2}^{\infty} n^3 (x-e)^{2n} = \sum_{n=1}^{\infty} (n+1)^3 (x-e)^{2(n+1)}$$

- c. [3 points] Suppose the power series $\sum_{n=0}^{\infty} C_n(x-2)^n$ converges at x=5 and diverges at x = 9. Which of the following could be the radius of convergence R? Circle all correct answers.

 - R = 0 R = 2
- R=3
- R=4
- R = 7 R = 8 R = 10