5. [12 points] Determine whether each of the following series converges, conditionally converges, or diverges. Fully justify your answer. Include any convergence tests used.

a. [6 points]
$$\sum_{n=1}^{\infty} ne^{-2n}$$

Circle one: Absolutely convergent Conditionally convergent Divergent

Justification:

Solution: Since $ne^{-n} < 1$ for all $n \ge 1$, $ne^{-2n} = (ne^{-n})e^{-n} \le e^{-n}$ and the series $\sum_{n=1}^{\infty} e^{-n}$ converges since it is a geometric series with common ratio e^{-1} whose magnitude is strictly less than 1, so $\sum_{n=1}^{\infty} ne^{-2n}$ converges by comparison test. Since $|ne^{-2n}| = ne^{-2n}$, the series $\sum_{n=1}^{\infty} ne^{-2n}$ is absolutely convergent.

b. [6 points]
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n+2}}{\sqrt{n^3+1}}$$

Circle one: Absolutely convergent

Conditionally convergent Divergent

Justification:

Solution: Since $\frac{\sqrt{n}+2}{\sqrt{n^3+1}}$ is decreasing and has limit zero, $\sum_{n=1}^{\infty} (-1)^n \frac{\sqrt{n}+2}{\sqrt{n^3+1}}$ converges by the alternating series test. On the other hand, since $\frac{\sqrt{n}+2}{\sqrt{n^3+1}} \ge \frac{\sqrt{n}}{\sqrt{n^3+n^3}} = \frac{1}{2n}$, and the series $\sum_{n=1}^{\infty} \frac{1}{2n}$ diverges by *p*-test with p = 1, we conclude by comparison test that $\sum_{n=1}^{\infty} \frac{\sqrt{n}+2}{\sqrt{n^3+1}}$ diverges. Therefore, the original series is only conditionally convergent.