6. [9 points] For each of the following questions, circle all answers that must be correct.
a. [3 points] Circle all true statements. The integral $\int_{0}^{\infty} \frac{1}{\sqrt{x}+x^{2}} d x$
i. diverges because $\frac{1}{\sqrt{x}+x^{2}}>\frac{1}{2 \sqrt{x}}$ for $0<x<1$.
ii. diverges because $\frac{1}{\sqrt{x}+x^{2}}>\frac{1}{2 x^{2}}$ for $1<x<\infty$.
iii. converges because $\lim _{x \rightarrow \infty} \frac{1}{\sqrt{x}+x^{2}}=0$.
iv. converges by p-test with $p=2$.
v. None of these.
b. [3 points] Consider a geometric series with $n^{\text {th }}$ partial sum S_{n}, where $\lim _{n \rightarrow \infty} S_{n}=\frac{5}{1-0.3}$. Which of the following statements must be true?
i. This geometric series must converge.
ii. The first term of this geometric series must be 0.3 .
iii. The common ratio of this geometric series must be 0.3.
iv. This geometric series may or may not converge; it cannot be determined.
v. None of these.
c. $[3$ points $]$ The series $1-\frac{1}{3}+\frac{1}{2}-\frac{1}{3^{2}}+\frac{1}{2^{2}}-\frac{1}{3^{3}}+\frac{1}{2^{3}}-\ldots$
i. converges by the Alternating Series Test.
ii. diverges because the Alternating Series Test does not apply.
iii. neither converges nor diverges.
iv. converges because it is a geometric series with common ratio of magnitude less than 1.
v. converges because the terms converge to 0 .
vi. None of these.
