7. [10 points]
a. [5 points] Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^{2}(2 n)!}{2^{n}(n!)^{2}} x^{2 n}$.

Solution: Compute

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{2}(2(n+1))!}{2^{n+1}((n+1)!)^{2}}|x|^{2(n+1)}}{\frac{n^{2}(2 n)!}{2^{n}(n!)^{2}}|x|^{2 n}} & =\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{n^{2}} \frac{(2 n+2)!}{(2 n)!} \frac{2^{n}}{2^{n+1}} \frac{(n!)^{2}}{((n+1)!)^{2}} \frac{|x|^{2 n+2}}{|x|^{2 n}} \\
& =\lim _{n \rightarrow \infty} \frac{(2 n+2)(2 n+1)}{2 n^{2}}|x|^{2} \\
& =2|x|^{2} .
\end{aligned}
$$

By ratio test, the power series converges for

$$
2|x|^{2}<1 \Longleftrightarrow|x|^{2}<\frac{1}{2} \Longleftrightarrow|x|<\frac{1}{\sqrt{2}} .
$$

Answer: \qquad
b. [5 points] You do not need to justify your answers below.

Suppose C_{n} is a sequence such that the following are true:

- C_{n} is a monotone decreasing sequence
- C_{n} converges to 0
- $\sum_{n=0}^{\infty} C_{n}$ diverges
- $\sum_{n=0}^{\infty} \frac{C_{n}(x+3)^{n}}{4^{n}}$ has radius of convergence 4 .

What is the center of convergence of $\sum_{n=0}^{\infty} \frac{C_{n}(x+3)^{n}}{4^{n}}$?
Answer: \qquad
What are the endpoints of the interval of convergence of $\sum_{n=0}^{\infty} \frac{C_{n}(x+3)^{n}}{4^{n}}$?
Answer: Left endpoint at $a=$ \qquad

Right endpoint at $b=$ \qquad
Let a and b be the left and right endpoints of the interval of convergence you found above.
Which of the following could be the interval of convergence of $\sum_{n=0}^{\infty} \frac{C_{n}(x+3)^{n}}{4^{n}}$?

$$
[a, b]
$$

$(a, b]$
(a, b)

$$
[a, b)
$$

