7. [10 points]

a. [5 points] Determine the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^2(2n)!}{2^n(n!)^2} x^{2n}$.

Solution: Compute

$$\lim_{n \to \infty} \frac{\frac{(n+1)^2 (2(n+1))!}{2^{n+1} ((n+1)!)^2} |x|^{2(n+1)}}{\frac{n^2 (2n)!}{2^n (n!)^2} |x|^{2n}} = \lim_{n \to \infty} \frac{(n+1)^2}{n^2} \frac{(2n+2)!}{(2n)!} \frac{2^n}{2^{n+1}} \frac{(n!)^2}{((n+1)!)^2} \frac{|x|^{2n+2}}{|x|^{2n}}$$
$$= \lim_{n \to \infty} \frac{(2n+2)(2n+1)}{2n^2} |x|^2$$
$$= 2|x|^2.$$

By ratio test, the power series converges for

$$2|x|^2 < 1 \iff |x|^2 < \frac{1}{2} \iff |x| < \frac{1}{\sqrt{2}}.$$

Answer: $\frac{1}{\sqrt{2}}$

- **b.** [5 points] You do not need to justify your answers below. Suppose C_n is a sequence such that the following are true:
 - \bullet C_n is a monotone decreasing sequence
 - C_n converges to 0
 - $\sum_{n=0}^{\infty} C_n$ diverges
 - $\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n}$ has radius of convergence 4.

What is the center of convergence of $\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n}$?

What are the endpoints of the interval of convergence of $\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n}$?

Answer: Left endpoint at $a = \underline{\hspace{1cm} -7}$

Right endpoint at $b = \underline{}$

Let a and b be the left and right endpoints of the interval of convergence you found above.

Which of the following could be the interval of convergence of $\sum_{n=0}^{\infty} \frac{C_n(x+3)^n}{4^n}$?

 $[a,b] \hspace{1cm} (a,b) \hspace{1cm} [a,b)$