4. [15 points] A gas station needs to pump gas out of a subterranean tank. The tank is 10 meters in length, and has cross-sections shaped like isosceles triangles, with base 3 meters and height 4 meters. The top of the tank is 15 meters below the surface of the earth. Recall that $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the gravitational constant.

Underground Tank
a. [5 points] Write an expression for the volume (in cubic meters) of a horizontal rectangular slice of gasoline at height h above the bottom of the tank, with thickness Δh. Your answer should not involve an integral.
b. [3 points] Gasoline has a density of $800 \mathrm{~kg} / \mathrm{m}^{3}$. Write an expression for the weight (in newtons) of the slice of gasoline mentioned in part (a). Your answer should not involve an integral.
c. [4 points] Write an expression for the work (in joules) needed to pump the slice of gasoline mentioned above to the surface of the earth. Your answer should not involve an integral.
d. [3 points] Write an integral for the total work (in joules) needed pump all of the gasoline to the surface of the earth.

