10. [8 points] Determine whether the following series converges or diverges. If it converges, determine if it is absolute or conditional convergence Circle your final answer choice. Fully justify your answer including using proper notation and showing mechanics of any tests you use.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}
$$

Circle one: Absolutely Converges Conditionally Converges Diverges

Solution: First, we see that if we ignore the $(-1)^{n}$, checking leading terms tells us this series behaves like $\frac{1}{n}$, which should diverge. Since we do have the $(-1)^{n}$, this is an alternating series, and so we should be trying to show this is conditionally convergent.

To apply the alternating series test, we note that the sequence of $a_{n}=\frac{\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}$ is a decreasing sequence ($a_{n} \geq a_{n+1}$), always positive ($a_{n}>0$), and the limit approaches zero $\lim _{n \rightarrow \infty} a_{n}=0$. Since the series is alternating, we satisfy the hypothesis of the alternating series test, and so the sequence converges.

To conclude conditionally convergent, we need to show the series:

$$
\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}\right|=\sum_{n=1}^{\infty} \frac{\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}
$$

diverges. Like we noted above, this functions behaves like $\frac{1}{n}$, so we need to use limit comparison or comparison test with this series to show it diverges.

Solution: Limit Comparison: Let $a_{n}=\frac{\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}$ and $b_{n}=\frac{1}{n}$. Then,

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}}{\frac{1}{n}}=\lim _{n \rightarrow \infty} \frac{n\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}=\lim _{n \rightarrow \infty} \frac{n^{3 / 2}+4 n}{3 n^{3 / 2}+2} .
$$

Using L'Hopital, or a dominating functions argument, we get:

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\lim _{n \rightarrow \infty} \frac{n^{3 / 2}+4 n}{3 n^{3 / 2}+2}=\frac{1}{3}
$$

Since this limit exists and is non-zero, the limit comparison test tells us that both $\sum_{n=1}^{\infty} \frac{\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}$ and $\sum_{n=1}^{\infty} \frac{1}{n}$ will either both converge or both diverge. Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges by p-series test with $p=1, \sum_{n=1}^{\infty} \frac{\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}$ diverges by limit comparison test.

Solution: (Direct) Comparison Test: We can also use the direct comparison test. Since we are trying to conclude divergence, we must bound below by a divergent series. We need that $n^{1 / 2} \leq n^{1 / 2}+2$ for all $n \geq 1$ to bound our numerator below. Then we use $3 n^{3 / 2}+2 \leq$ $3 n^{3 / 2}+n^{3 / 2}=4 n^{3 / 2}$, and so

$$
\frac{1}{4 n^{3 / 2}} \leq \frac{1}{3 n^{3 / 2}+2}
$$

for $n \geq 2$, to bound the denominator below. Putting this together, we get

$$
\frac{1}{4 n}=\frac{n^{1 / 2}}{4 n^{3 / 2}} \leq \frac{\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}
$$

Then, the series $\sum_{n=1}^{\infty} \frac{1}{4 n}=\frac{1}{4} \sum_{n=1}^{\infty} \frac{1}{n}$ diverges by p-series test, with $p=1$. Then, by (direct) comparison test, $\sum_{n=1}^{\infty} \frac{\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}$ diverges.

