7. [12 points] The parts of this problem are unrelated to each other.
a. [7 points] Compute the value of the following improper integral if it converges. If it does not converge, use a direct computation of the integral to show its divergence. Be sure to show your full computation, and be sure to use proper notation.

$$
\int_{1}^{2} \frac{1}{\sqrt{t-1}} d t
$$

Solution: First, this is an improper integral at $t=1$. Therefore, we need to switch to limit notation:

$$
\int_{1}^{2} \frac{1}{\sqrt{t-1}} d t=\lim _{b \rightarrow 1^{+}} \int_{b}^{2} \frac{1}{\sqrt{t-1}} d t
$$

Now, we do a u-sub, with $u=t-1$, so $d u=d t$, so our integral becomes

$$
\lim _{b \rightarrow 1^{+}} \int_{b-1}^{1} \frac{1}{\sqrt{u}} d u=\left.\lim _{b \rightarrow 1^{+}} 2 \sqrt{u}\right|_{b-1} ^{1}
$$

Evaluating we get:

$$
\lim _{b \rightarrow 1^{+}}(2 \sqrt{1}-2 \sqrt{b-1})=2
$$

b. [5 points] Compute the following limit. Fully justify your answer including using proper notation.

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}
$$

Solution: As x goes to zero, this becomes an indeterminant form of $\frac{0}{0}$, so we apply L'Hopital to get

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x} .
$$

This is also an indeterminant form, so we use L'Hopital again, to get:

$$
\lim _{x \rightarrow 0} \frac{\sin (x)}{2 x}=\lim _{x \rightarrow 0} \frac{\cos (x)}{2} .
$$

Computing the final limit gives

$$
\lim _{x \rightarrow 0} \frac{\cos (x)}{2}=\frac{\cos (0)}{2}=\frac{1}{2} .
$$

So the final answer is

$$
\lim _{x \rightarrow 0} \frac{1-\cos (x)}{x^{2}}=\frac{1}{2}
$$

