8. [8 points] Determine whether the following improper integral converges or diverges. Circle your final answer choice. Fully justify your answer including using proper notation and showing mechanics of any tests you use.

$$\int_{1}^{\infty} \frac{t^2 + \ln(t)}{t^3 - \cos(t) + 2} dt$$

Circle one:

Converges Diverges

Solution: The numerator of the integrand is dominated by t^2 , and the denominator is dominated by t^3 , so this function has the same behavior as $\frac{t^2}{t^3} = \frac{1}{t}$, so we expect it to diverge. Therefore, we want to bound this function below by a function whose integral diverges. First, we note that $t^2 \leq t^2 + \ln(t)$ on $[1, \infty)$. Then, for the denominator, since $\cos(x)$ oscillates from [-1, 1], the denominator is largest (and so the function is smallest) when $\cos(x) = -1$, so we get that $t^3 - \cos(t) + 2 \leq t^3 + 1 + 2$, and so

$$\frac{t^2}{t^3+3} \le \frac{t^2}{t^3 - \cos(t) + 2} \le \frac{t^2 + \ln(t)}{t^3 - \cos(t) + 2}$$

Next we know that $3 \leq \frac{1}{2}t^3$ on $[2,\infty]$, and so $t^3 + 3 \leq t^3\frac{1}{2}t^3 = \left(\frac{3}{2}\right)t^3$, and so we get

$$\left(\frac{2}{3}\right)\frac{1}{t} = \left(\frac{2}{3}\right)\frac{t^2}{t^3} \le \frac{t^2}{t^3+3} \le \frac{t^2 + \ln(t)}{t^3 - \cos(t) + 2}.$$

Then, $\frac{2}{3} \int_{1}^{\infty} \frac{1}{t} dt$ diverges by *p*-test, with p = 1, and so $\int_{1}^{\infty} \frac{t^2 + \ln(t)}{t^3 - \cos(t) + 2} dt$ diverges by comparison test, comparing $\left(\frac{2}{3}\right) \frac{1}{t} \le \frac{t^2 + \ln(t)}{t^3 - \cos(t) + 2}$