9. [8 points] Determine whether the following series converges or diverges. If it converges, determine if it is absolute or conditional convergence Circle your final answer choice. Fully justify your answer including using proper notation and showing mechanics of any tests you use.

$$
\sum_{n=1}^{\infty} \frac{n(-2)^{n}}{3^{n}}
$$

Circle one: Absolutely Converges Conditionally Converges Diverges

Solution: We use the ratio test to show absolute convergence. Let $a_{n}=\frac{(-1)^{n}\left(n^{1 / 2}+4\right)}{3 n^{3 / 2}+2}$. Then, we get

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)(-2)^{n+1}}{3^{n+1}} \cdot \frac{3^{n}}{n(-2)^{n}}\right|
$$

Since we take absolute value, we can drop our negative signs. Then, we can regroup terms and simplify :

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)}{n} \cdot \frac{2^{n+1}}{2^{n}} \cdot \frac{3^{n}}{3^{n+1}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(n+1)}{n} \cdot \frac{2}{1} \cdot \frac{1}{3}\right|
$$

All of our terms are positive, so we can drop the absolute value signs. Therefore, we see that the limit is

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\frac{2}{3} \lim _{n \rightarrow \infty} \frac{(n+1)}{n}=\frac{2}{3}
$$

where one can conclude $\lim _{n \rightarrow \infty} \frac{(n+1)}{n}=1$ by L'Hopital, a dominating functions argument, or by writing $\frac{(n+1)}{n}=1+\frac{1}{n}$. Since $\frac{2}{3}<1$, this series converges absolutely by the ratio test.

