2. [14 points] Consider the following sequences, all defined for $n=1,2,3, \ldots$

$$
\begin{aligned}
& a_{n}=\int_{0}^{n} 10 e^{-t} d t \\
& b_{n}=(-1)^{n} \frac{100}{n^{0.75}} \\
& c_{n}=5(-3)^{n-3}
\end{aligned}
$$

a. [3 points] Which sequences are monotone? No justification is required for this part of the problem. Circle your final answer(s) below.

$$
\text { Circle your answer }(s): \quad a_{n} \quad b_{n} \quad c_{n} \quad \text { NONE }
$$

b. [3 points] Which sequences are bounded? No justification is required for this part of the problem. Circle your final answer(s) below.

$$
\text { Circle your answer }(s): \quad a_{n} \quad b_{n} \quad c_{n} \quad \text { NONE }
$$

c. [3 points] Which sequences are convergent? No justification is required for this part of the problem. Circle your final answer(s) below.

$$
\text { Circle your answer(s): } \quad a_{n} \quad b_{n} \quad c_{n} \quad \text { NONE }
$$

d. [5 points] Write a closed form expression for the series $\sum_{n=2}^{2023} c_{n}$. Your expression should be able to be evaluated using a simple calculator (i.e. no letters, no ellipses (...) and no sigma notation). Do not simplify the numbers in your expression.

Answer: $\sum_{n=2}^{2023} c_{n}=$

