2. [14 points] Consider the following sequences, all defined for $n=1,2,3, \ldots$

$$
\begin{aligned}
a_{n} & =\int_{0}^{n} 10 e^{-t} d t \\
b_{n} & =(-1)^{n} \frac{100}{n^{0.75}} \\
c_{n} & =5(-3)^{n-3}
\end{aligned}
$$

a. [3 points] Which sequences are monotone? No justification is required for this part of the problem. Circle your final answer(s) below.

Circle your answer(s): \square $b_{n} \quad c_{n}$
NONE
b. [3 points] Which sequences are bounded? No justification is required for this part of the problem. Circle your final answer(s) below.

Circle your $\operatorname{answer}(s): \quad a_{n} \quad b_{n} \quad c_{n} \quad$ NONE
c. [3 points] Which sequences are convergent? No justification is required for this part of the problem. Circle your final answer(s) below.

Circle your $\operatorname{answer}(s): \quad a_{n} \quad b_{n} \quad c_{n} \quad$ NONE
d. [5 points] Write a closed form expression for the series $\sum_{n=2}^{2023} c_{n}$. Your expression should be able to be evaluated using a simple calculator (i.e. no letters, no ellipses (...) and no sigma notation). Do not simplify the numbers in your expression.

Solution:

- The first term in the series is $c_{2}=5(-3)^{2-3}=-\frac{5}{3}$.
- The number of terms in the series is 2022.
- The common ratio between consecutive terms in the series is -3 .

Using these three facts, and the formula for the sum of a finite geometric series, we obtain the answer below.

$$
\text { Answer: } \quad \sum_{n=2}^{2023} c_{n}=-\frac{5}{3}\left(\frac{1-(-3)^{2022}}{1-(-3)}\right)
$$

