3. [12 points] Consider the following sequences, all defined for $n=1,2,3, \ldots$

$$
\begin{aligned}
a_{n} & =\int_{0}^{n} 10 e^{-t} d t \\
b_{n} & =(-1)^{n} \frac{100}{n^{0.75}}
\end{aligned}
$$

These are the same first two sequences from the previous problem.
a. [6 points] Does the series $\sum_{n=1}^{\infty} a_{n}$ converge or diverge? Fully justify your answer, including full mechanics of any tests you use.

Circle one: Converges Diverges
Solution: Consider

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} \int_{0}^{n} 10 e^{-t} d t=\lim _{n \rightarrow \infty}-\left.10 e^{-t}\right|_{0} ^{n}=\lim _{n \rightarrow \infty}-10 e^{-n}+10=10 \neq 0
$$

Therefore, by the Divergence Test, $\sum_{n=1}^{\infty} a_{n}$ must diverge.
b. [6 points] Does the series $\sum_{n=1}^{\infty} b_{n}$ converge or diverge? Fully justify your answer, including full mechanics of any tests you use.

Circle one: Converges Diverges
Solution: Consider $d_{n}=\frac{100}{n^{0.75}}$. Since $d_{n}>0$ (i.e. d_{n} is positive), and $d_{n+1}=\frac{100}{(n+1)^{0.75}}<$ $\frac{100}{n^{0.75}}=d_{n}$ (d_{n} is decreasing) for all n, and

$$
\lim _{n \rightarrow \infty} d_{n}=\frac{100}{n^{0.75}}=0
$$

by the Alternating Series Test, we must have that $\sum_{n=1}^{\infty}(-1)^{n} d_{n}=\sum_{n=1}^{\infty} b_{n}$ must converge.

