5. [8 points] Use the comparison test for series to determine if the following series converges or diverges. Circle your final answer choice. Fully justify your answer including using proper notation and showing mechanics of the comparison test.

$$
\sum_{n=3}^{\infty} \frac{\ln (n)}{n+\ln (n)}
$$

Circle one:

Converges

Solution: We first note that $\ln n<n$ for all n, and $\ln n>1$ for all $n \geq 3$. Therefore, we have

$$
\frac{\ln n}{n+\ln n}>\frac{1}{n+\ln n}>\frac{1}{n+n}=\frac{1}{2 n}, \text { for } n \geq 3 .
$$

Next, by the p-test $(p=1)$, we know that $\sum_{n=3}^{\infty} \frac{1}{2 n}$ diverges. Therefore, by the (direct) comparison test (along with the inequality above, and the fact that the terms of the original series are positive), we have that $\sum_{n=3}^{\infty} \frac{\ln (n)}{n+\ln (n)}$ must also diverge.

