8. [12 points] The parts of this problem are unrelated to each other.
a. [5 points] Compute the following limit. Fully justify your answer including using proper notation.

$$
\lim _{x \rightarrow \infty} 2 x \ln \left(1+\frac{5}{x}\right)
$$

Solution: We note that $\lim _{x \rightarrow \infty} 2 x=\infty$, and $\lim _{x \rightarrow \infty} \ln \left(1+\frac{5}{x}\right)=0$. So, the limit is in the " $\infty \cdot 0$ " form, allowing us to attempt to use L'Hôpital's rule. So, we first express the limit as a fraction, and proceed as shown below.

$$
\begin{aligned}
\lim _{x \rightarrow \infty} 2 x \ln \left(1+\frac{5}{x}\right) & =2 \lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{5}{x}\right)}{\frac{1}{x}} \\
& \stackrel{\text { L'H }}{=} 2 \lim _{x \rightarrow \infty} \frac{\frac{1}{1+\frac{5}{x}} \cdot \frac{-5}{x^{2}}}{\frac{-1}{x^{2}}} \\
& =2 \lim _{x \rightarrow \infty} \frac{1}{1+\frac{5}{x}} \cdot 5 \\
& =10 .
\end{aligned}
$$

Answer: $\quad \lim _{x \rightarrow \infty} 2 x \ln \left(1+\frac{5}{x}\right)=\underline{10}$
b. [7 points] Compute the value of the following improper integral if it converges. If it does not converge, use a direct computation of the integral to show its divergence. Circle your final answer choice. Show your full computation, and use proper notation.

$$
\int_{0}^{3} \frac{1}{(x-3)^{2}} d x
$$

Circle one:
Converges to: \qquad Diverges

Solution: We note that $\frac{1}{(x-3)^{2}}$ has a vertical asymptote at $x=3$. Therefore, we express the given (improper) integral as follows, and proceed with direct computation.

$$
\begin{aligned}
\int_{0}^{3} \frac{1}{(x-3)^{2}} d x & =\lim _{b \rightarrow 3^{-}} \int_{0}^{b} \frac{1}{(x-3)^{2}} d x \\
& =\lim _{b \rightarrow 3^{-}}-\left.\frac{1}{x-3}\right|_{0} ^{b} \\
& =\lim _{b \rightarrow 3^{-}}-\frac{1}{b-3}-\frac{1}{3} \\
& =+\infty(\text { or DNE })
\end{aligned}
$$

Therefore, by direct computation, $\int_{0}^{3} \frac{1}{(x-3)^{2}} d x$ diverges.

