8. [12 points] The parts of this problem are unrelated to each other.
 a. [5 points] Compute the following limit. Fully justify your answer including using proper notation.
 \[
 \lim_{x \to \infty} 2x \ln \left(1 + \frac{5}{x}\right)
 \]

 Solution: We note that \(\lim_{x \to \infty} 2x = \infty \), and \(\lim_{x \to \infty} \ln \left(1 + \frac{5}{x}\right) = 0 \). So, the limit is in the “\(\infty \cdot 0 \)” form, allowing us to attempt to use L’Hôpital’s rule. So, we first express the limit as a fraction, and proceed as shown below.

 \[
 \lim_{x \to \infty} 2x \ln \left(1 + \frac{5}{x}\right) = 2 \lim_{x \to \infty} \ln \left(1 + \frac{5}{x}\right) \cdot \frac{1}{x} \\
 \text{L’H} \Rightarrow 2 \lim_{x \to \infty} \frac{\frac{1}{1+\frac{5}{x}} \cdot -\frac{5}{x^2}}{-\frac{1}{x^2}} \\
 = 2 \lim_{x \to \infty} \frac{1}{1 + \frac{5}{x}} \cdot 5 \\
 = 10.
 \]

 Answer: \(\lim_{x \to \infty} 2x \ln \left(1 + \frac{5}{x}\right) = 10 \)

 b. [7 points] Compute the value of the following improper integral if it converges. If it does not converge, use a direct computation of the integral to show its divergence. **Circle your final answer choice.** Show your full computation, and use proper notation.

 \[
 \int_0^3 \frac{1}{(x-3)^2} \, dx
 \]

 Circle one:

 Converges to:

 Diverges

 Solution: We note that \(\frac{1}{(x-3)^2} \) has a vertical asymptote at \(x = 3 \). Therefore, we express the given (improper) integral as follows, and proceed with direct computation.

 \[
 \int_0^3 \frac{1}{(x-3)^2} \, dx = \lim_{b \to 3^-} \int_0^b \frac{1}{(x-3)^2} \, dx \\
 = \lim_{b \to 3^-} \left[-\frac{1}{x-3} \right]_0^b \\
 = \lim_{b \to 3^-} \left(-\frac{1}{b-3} - \frac{1}{3} \right) \\
 = +\infty \text{ (or DNE)}.
 \]

 Therefore, by direct computation, \(\int_0^3 \frac{1}{(x-3)^2} \, dx \) diverges.