
Math 116 / Exam 2 (March 25, 2024) page 11

7. [7 points] Determine whether the following series is convergent or divergent. Fully justify your
answer including using proper notation and showing mechanics of any tests you use.
Circle your final answer choice.
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Circle one: Convergent Divergent

Solution: We claim that the series is convergent. To show this, we use the ratio test. Let
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Therefore, by the ratio test, the series

∞
∑

n=2

4n · n
2

n!
is convergent.

8. [6 points] Compute the following limit. Fully justify your answer including using proper notation.

lim
x→0

e
2x

− (x+ 1)2

cos(x)− 1

Solution: We first note that this limit is of the indeterminate form
0

0
. We apply L’Hôpital’s rule:

lim
x→0

e
2x

− (x+ 1)2

cos(x)− 1

L
′
H

0

0= lim
x→0

2e2x − 2(x+ 1)

− sin(x)
.

But now this new limit is again of the indeterminate form
0

0
. We apply L’Hôpital’s rule a second

time:

lim
x→0
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− sin(x)
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′
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0

0= lim
x→0

4e2x − 2

− cos(x)
=

4− 2

−1
= −2.

Therefore the original limit equals −2.

Answer: −2
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