1. (6 points) Which of the following differential equations has the slope field given in the figure? (Circle the letter of each correct answer.)

 a. \(\frac{dy}{dx} = \frac{2x}{1+x^2} \) b. \(\frac{dy}{dx} = e^{-y^2} \) c. \(\frac{dy}{dx} = \frac{2x^2}{1+x^4} \)

 ![Slope Field Image]

 d. \(\frac{dy}{dx} = \frac{2y}{1+y^2} \) e. \(\frac{dy}{dx} = e^{-x^2} \) f. \(\frac{dy}{dx} = \frac{2y^2}{1+y^4} \)

2. (8 points) Circle “True” or “False” for each of the following statements. No explanation is necessary. (Remember that “True” means the statement is always true.)

 (a) The function \(y(t) = 0 \) is an equilibrium solution of the differential equation \(\frac{dy}{dt} = y + t \).

 True. False.

 There is no constant \(y_0 \) such that \(\frac{dy}{dt} - y + t = 0 \) for \(y = y_0 \) and all \(t \), so there is no equilibrium solution of the equation.

 (b) If \(P(t) \) is a solution of the logistic differential equation, \(\frac{dP}{dt} = .5P(200 - P) \), then so is the function \(2P(t) \).

 True. False.

 The constant function \(P(t) = 200 \) is a solution of the equation, but \(2P(t) \) is not.