7. (5 points) For $-\frac{\sqrt{\pi}}{2} \le x \le \frac{\sqrt{\pi}}{2}$, let A(x) be the area of the region bounded by the curves $\cos{(t^2)}$, $\sin{(t^2)}$, and the vertical lines $t = -\frac{\sqrt{\pi}}{2}$ and t = x. See the figure below.

(a) Sketch on the figure an area that represents $\Delta A = A(x + \Delta x) - A(x)$ for a small number Δx .

See the picture above.

(b) Find a formula for the derivative A'(x).

When Δx is very small, the area ΔA is well approximated by the area of the box of width Δx and height $\cos\left(x^2\right) - \sin\left(x^2\right)$. Hence we find $\Delta A \simeq \left[\cos\left(x^2\right) - \sin\left(x^2\right)\right] \Delta x$.

Thus, we have $\frac{\Delta A}{\Delta x} \simeq \cos(x^2) - \sin(x^2)$. Letting Δx go to zero, the ratio $\frac{\Delta A}{\Delta x}$ approaches A'(x), which is how we arrive at the answer given below.

ANSWER: $A'(x) = \cos(x^2) - \sin(x^2)$.

8. (6 points) For what values of the positive number p does the infinite series $\sum_{n=1}^{\infty} \frac{n^3 - 4n^2}{n^p + 5}$ converge? Explain the reason for your answer.

As n gets very large, the numerator of the general term of the given series "behaves" like n^3 , while its denominator "behaves" like n^p . Thus, our series is comparable to the series

$$\sum_{n=1}^{\infty} \frac{n^3}{n^p} = \sum_{n=1}^{\infty} \frac{1}{n^{p-3}}.$$

From classwork, we know such a series converges if and only if p-3>1, i.e. if and only if p>4.

ANSWER: p > 4