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3. [7 points] The function erf(x) is defined to be erf(x) = 2√
π

∫
x

0
e
−t

2

dt. Find the Taylor series for erf(x)

around x = 0.

Solution:
We know that the Taylor series for e

t at t = 0 is e
t =

∞
Σ

n=0

t
n

n! . Thus the series for e
−t

2

=
∞
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t
2n

n! .

We can integrate this to find the Taylor series for erf(x):
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√
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dt =
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.

Note that if we try and derive this from first principles it is more difficult to get the general
term: erf ′(x) = 2√

π
e
−x

2

, so erf ′′(x) = 2√
π
(−2xe

−x
2

), and so on: erf ′′′(x) = 2√
π
(−2e−x

2

+4x2
e
−x

2

),

erf 4(x) = 2√
π
(12xe

−x
2

−8x3
e
−x

2

), etc. So erf(0) = 0, erf ′(0) = 2√
π
, erf ′′(0) = 0, erf ′(0) = 2√

π
·(−2),

erf 4(0) = 0, etc. This gives us the first two non-zero terms of the series, but doesn’t shed much
insight on the general progression.
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