- 5. [10 points] A mathematician proposed* that the velocity, v(t), of a sprinter running less than 300 meters might satisfy the differential equation $\frac{dv}{dt} = k(v R)$, for some constants k and R. For a sprint, it makes sense that v(0) = 0.
 - (a) [4 points of 10] Find the general solution to this differential equation.

Solution:

We can separate variables to get $\frac{dv}{v-R} = kdt$. Integrating both sides, we have $\ln |v-R| = kt + C$, so that $v = R + Ae^{kt}$, for some arbitrary constant $A = \pm e^{C}$.

(b) [2 points of 10] Find the particular solution to the initial value problem. (Your answer may involve the constants k and R.)

Solution:

We know that v(0) = 0. This gives 0 = R + A, so A = -R, and the particular solution is $v = R(1 - e^{kt})$.

(c) [4 points of 10] Linford Christie won the men's 100 meter race in the 1993 World Track Championships in a time of 9.87 sec. If one second into the race he had reached 51% of his maximum possible speed, find values for the parameters k and R in the problem.

Solution:

Note that v = R is an equilibrium solution to the equation, and that as $t \to \infty$ we must have $v \to R$ (k is negative, so that $\frac{dv}{dt} > 0$ when v = 0). Thus Christie's top speed is R, and if Christie reaches 51% of his maximum speed after one second, we know v(1) = 0.51R. Thus $R(1 - e^k) = 0.51R$, so that $e^k = 0.49$, and $k = \ln(0.49) \approx -0.713$. As we expected, this is less than zero. Then we know that in 9.87 seconds Christie covers 100 m. This is the integral of the velocity, so that

$$100 = \int_0^{9.87} R(1 - e^{-0.713t}) dt = R\left(t + \frac{1}{0.713}e^{-0.713t}\right) \Big|_0^{9.87}$$
$$= R\left(9.87 + 1.403\left(e^{-7.037} - 1\right)\right)$$
$$= 8.468R.$$

Dividing by 8.468, we find $R = \frac{100}{8.468} = 11.81$.

^{*} J.B. Keller, in Physics Today, Sept. 1973