9. [12 points] It turns out that students at Alex and Chris’ university have a strong tradition of taking university math classes. In fact, Chris determines that for the function \(p(t) = \frac{1}{5(t + t)}^2 \), the fraction of students having completed between \(t \) and \(t + \Delta t \) years of collegiate mathematics is given approximately by \(p(t) \Delta t \).

(a) [4 points of 12] Carefully find the fraction of students who have completed at least two years of university mathematics.

Solution:
Given the property that \(p(t) \Delta t \) gives the fraction of students having completed between \(t \) and \(t + \Delta t \) years of collegiate mathematics, we can find the fraction having completed at least two years of mathematics by integrating. This is
\[
\int_2^\infty \frac{1}{5(t + t)}^2 \, dt
\]
This is clearly an improper integral, so we evaluate it with some care and a limit.
\[
\int_2^\infty \frac{1}{5(t + t)}^2 \, dt = \lim_{b \to \infty} \int_2^b \frac{1}{5(t + t)}^2 \, dt = \lim_{b \to \infty} \left(\frac{1}{5(t + t)} + \frac{1}{5(t + t)} \right) = \frac{1}{11}. \text{ Or, about 9%}.
\]

(b) [4 points of 12] Let \(q(x) \) be the fraction of students that complete no more than \(x \) years of university mathematics. Write an integral that gives \(q(x) \). Then evaluate your integral to find a formula for \(q(x) \).

Solution:
We note that \(q(x) = \int_0^x p(t) \, dt \), an antiderivative of \(p(t) \). Evaluating, we get \(q(x) = 1 - \frac{1}{5(x + x)} = 1 - \frac{5x}{1 + 5x} \).

(c) [4 points of 12] We might think that the integral \(\int_0^\infty t p(t) \, dt \) would give the average number of years of university mathematics that the students take. Explain why this does not make sense in this context. (Hint: how large is this value?)

Solution:
Note that for \(t \geq 1 \), \(\frac{t}{5(t + t)}^2 > \frac{t}{5(t + t)}^2 = \frac{1}{5t} \), and \(\int_1^\infty \frac{1}{5t} \, dt \) diverges. Thus \(\int_1^\infty \frac{t}{5(t + t)}^2 \, dt \) diverges, which means that \(\int_0^\infty \frac{t}{5(t + t)}^2 \, dt \) must also. This suggests that the mean number of years of university mathematics that the students study is infinite, which seems unlikely.