Suppose that the first and third degree Taylor polynomials, $P_1(x)$ and $P_3(x)$, approximating a function g(x) at a=0 are given in the graph to the right, below.

Solution: We know g(0) = 1, and from $P_1(x)$, g'(0) = 1. Then $P_3(x)$ appears to be concave down, so we know that g''(0) < 0. We cannot, however, determine a value for g''(0).

b. [4 points] Could g(x) be the function $1 + \sin(x)$? Why or why not?

Solution: For this g(x) we know g(0) = 1, $g'(0) = \cos(0) = 1$ and $g''(0) = -\sin(0) = 0$. While the first two of these are consistent with our observations in (a), the last is not, so g(x) could not be the function $1 + \sin(x)$.