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2. [10 points] Find the interval of convergence for the power series
∞
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n
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Solution: To find the radius of convergence, we use the ratio test:
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This must be less than one, so |x − 1| <
1
2 , and the radius is R = 1

2 . Testing convergence at

the endpoints, we have at x = 1
2 the series
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n
, the alternating harmonic

series, which converges. At x = 3
2 , we similarly have
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=
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n
, which is the harmonic

series, which diverges. Thus the interval of convergence is 1
2 ≤ x <

3
2 .
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