4. [12 points] The density of the Earth changes with the distance below the surface of the Earth one goes. If x gives the distance (in km) below the surface, the density $\delta(x)$ (in kg/km³) is approximately

x	0	1000	2000	2900	3000	4000	5000	6000	6370
$\delta(x)$	3300	4500	5100	5600	$10,\!100$	$11,\!400$	$12,\!600$	13,000	$13,\!000$

(the radius R of the Earth is about 6370 km). Let r measure the distance out from the center of the Earth.

a. [4 points] The integral $\int_0^{4000} (4\pi \cdot r^2 \cdot \delta(R-r)) dr$ is the limit as $\Delta r \to 0$ of a Riemann sum $\sum 4\pi \cdot r^2 \cdot \delta(R-r) \cdot \Delta r$. In the context of this problem, what do the terms of this sum represent?

Solution: The terms of the sum are "slices" of mass at a radius r with a thickness Δr . The expression $4\pi r^2 \Delta r$ is the volume of a spherical shell with a radius r, and $\delta(R-r)$ is the density at that radius.

b. [4 points] Now consider the integral $\int_{R-4000}^{R} (4\pi \cdot r^2 \cdot \delta(R-r)) dr$. Rewrite this in terms the variable x. Estimate your rewritten integral with MID(2).

Solution: We know r is the radial distance out from the center of the earth, so x = R - r, which gives dx = -dr, and we can substitute to rewrite the integral:

$$\int_{R-4000}^{R} 4\pi \cdot r^2 \cdot \delta(R-r) \, dr = -\int_{4000}^{0} 4\pi \cdot (R-x)^2 \cdot \delta(x) \, dx = \int_{0}^{4000} 4\pi \cdot (R-x)^2 \cdot \delta(x) \, dx.$$

Estimating this with MID(2), we have

$$\int_0^{4000} 4\pi \cdot (R-x)^2 \cdot \delta(x) \, dx \approx 4\pi \cdot (2000) \left((R-1000)^2 \, (4500) + (R-3000)^2 \, (10,100) \right)$$
$$\approx 6.144 \times 10^{15} \text{ kg.}$$

c. [4 points] Let $F(x) = \int_{R-x}^{R} (4\pi \cdot r^2 \cdot \delta(R-r)) dr$. Find F'(x), showing work that shows how you obtained your answer.

Solution: Using the Second Fundamental Theorem of Calculus,

$$F'(x) = -\frac{d}{dx} \int_{R}^{R-x} 4\pi r^2 \,\delta(R-r) \,dr = -(-1)4\pi \,(R-x)^2 \,\delta(x) = 4\pi \,(R-x)^2 \,\delta(x).$$