1. [10 points] For each statement below, circle TRUE if the statement is always true; otherwise, circle FALSE. No partial credit on this page.

 a. [2 points] The differential equation \(\frac{dy}{dt} = y \sin(t + 1) - y \) is separable.
 \[\text{True} \quad \text{False} \]

 b. [2 points] If money is placed into a bank account with continuous interest rate \(k \), then the amount of money, \(A \), at time \(t \) years can be modeled with the differential equation \(\frac{dA}{dt} = kt \).
 \[\text{True} \quad \text{False} \]

 c. [2 points] Suppose the power series \(\sum_{n=1}^{\infty} C_n(x + 2)^n \) converges at \(x = -5 \), but diverges at \(x = 5 \). Then the series must diverge at \(x = 3 \).
 \[\text{True} \quad \text{False} \]

 d. [2 points] The differential equation \(\frac{dy}{dx} = \cos(y) \) has an infinite number of equilibrium solutions.
 \[\text{True} \quad \text{False} \]

 e. [2 points] Consider the differential equation \(\frac{dy}{dx} = x^2 \), and the solution that satisfies \(y(-1) = 1 \). If Euler’s method is used with step-size \(\Delta x = 0.1 \), then the Euler approximation for \(y(-0.5) \) is an underestimate of the real solution.
 \[\text{True} \quad \text{False} \]