3. [6 points] Suppose $f(x)$ is a twice-differentiable function. On the interval [a, b], for $0<a<b$, $f(x)$ is positive, increasing, and concave up. Suppose $g(x)=x(f(x))^{2}$. If one uses the midpoint rule to estimate $\int_{a}^{b} g(x) d x$, will the estimation be an overestimate or an underestimate? Be sure to justify your answer and show all appropriate work. (Hint: You might find it helpful to consider the concavity of function $g(x)$.)
Solution: The midpoint rule is an overestimate when the integrand function is concave down, and an underestimate when the integrand function is concave up. In order to determine the concavity of $g(x)$ on the interval $[a, b]$, we need to find $g^{\prime \prime}(x)$.

$$
\begin{aligned}
g^{\prime}(x) & =2 x f(x) \cdot f^{\prime}(x)+(f(x))^{2} \\
g^{\prime \prime}(x) & =2 x\left(f(x) f^{\prime \prime}(x)+\left(f^{\prime}(x)\right)^{2}\right)+2 f(x) f^{\prime}(x)+2 f(x) \cdot f^{\prime}(x) \\
& =2 x f(x) f^{\prime \prime}(x)+2 x\left(f^{\prime}(x)\right)^{2}+4 f(x) f^{\prime}(x)
\end{aligned}
$$

Since all terms are positive on the interval $[a, b], g(x)$ is concave up, so the estimation will be an underestimate.

