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8. [14 points] Consider the following power series

∞
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a. [11 points] For what values of x does the power series converge?

Solution: Ratio Test:
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Then the series converge for values of x satisfying |x−3|
4

< 1. Then the series con-
verge for −1 < x < 7.

Enpoints (x = −1, 7): x = −1 yields
∑∞

n=1
1

2n+1
. Limit Comparison Test with
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n

lim
n→∞

1
2n+1

1
n

= lim
n→∞

n
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Hence
∑∞

n=1
1

2n+1
diverges.

x = 7 yields
∑∞

n=1
(−1)n

2n+1
. Alternating series test: an = f(n) = 1

2n+1

•limn→∞
1

2n+1
= 0.

•an decreasing: f ′(n) = −2
(2n+1)2

< 0 for n > 0.

Hence
∑∞

n=1
(−1)n

2n+1
converges. Hence the interval of convergence of the series is

(−1, 7].

b. [2 points] For what values of x does the power series converges absolutely?

Solution: −1 < x < 7

c. [1 point] For what values of x does the power series converges conditionally?

Solution: x = 7
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