2. [12 points] The graph of $F(x)$ is given below. The function $F(x)$ is defined for $0 \leq x<4$, and its graph is given below. As shown $F(x)$ has a vertical asymptote at $x=4$. Let $G(x)$ be the antiderivative of $F(x)$ with $G(1)=1$.

a. [2 points] For what values of x is $G(x)$ increasing?

Solution: Since $G(x)$ is an antiderivative of $F(x), G^{\prime}(x)=F(x)$. Then $G(x)$ is increasing for $F(x) \geq 0$, which is true for $0 \leq x<4$.
b. [2 points] For what values of x is $G(x)$ concave up?

Solution: Since $G^{\prime}(x)=F(x), G^{\prime \prime}(x)=F^{\prime}(x)$. Therefore, $G(x)$ is concave up where $F^{\prime}(x) \geq 0$, i.e. when $F(x)$ is increasing. This is true for $2 \leq x<4$.
c. [2 points] Find a formula for $G(x)$ in terms of $F(x)$.

Solution: Since $G(x)$ is the antiderivative of $F(x)$ with $G(1)=1$, the Construction Theorem (Second Fundamental Theorem of Calculus) gives that $G(x)=1+\int_{1}^{x} F(t) d t$.
d. [4 points] Is $\int_{0}^{4} \frac{10}{\sqrt{4-x}} d x$ convergent or divergent? If it is convergent, find its exact value.

Solution: The given integral is improper (the integrand is undefined at $x=4$), so we must use limits to calculate it. Substituting $w=4-x, d w=-d x$, we obtain

$$
\begin{aligned}
\int_{0}^{4} \frac{10}{\sqrt{4-x}} d x & =\lim _{b \rightarrow 4^{-}} \int_{0}^{b} \frac{10}{(4-x)^{1 / 2}} d x=\lim _{b \rightarrow 4^{-}} \int_{w(0)}^{w(b)} \frac{10}{w^{1 / 2}} \cdot-d w \\
& =\lim _{b \rightarrow 4^{-}}-\left.20 w^{1 / 2}\right|_{w(0)} ^{w(b)}
\end{aligned}
$$

In terms of x,

$$
\left.\lim _{b \rightarrow 4^{-}}(-20 \sqrt{4-x})\right|_{0} ^{b}=\lim _{b \rightarrow 4^{-}}-20(\sqrt{4-b}-\sqrt{4-0})=-20(\sqrt{4-4}-\sqrt{4})=40
$$

So the integral converges.
e. [2 points] Does $\lim _{x \rightarrow 4^{-}} G(x)$ exist? Justify.

Solution: Yes, the given limit exists. This is because $\lim _{x \rightarrow 4^{-}} G(x)=\lim _{x \rightarrow 4^{-}}\left(1+\int_{1}^{x} F(t) d t\right)=$ $1+\int_{1}^{4} F(x) d x$, so the existence of the given limit depends on whether or not the integral $\int_{1}^{4} F(x) d x$ converges. We are given that $F(x) \leq \frac{10}{\sqrt{4-x}}$ over $1 \leq x<4$, then

$$
\int_{1}^{4} F(x) d x \leq \int_{1}^{4} \frac{10}{\sqrt{4-x}} d x
$$

and since $\int_{1}^{4} \frac{10}{\sqrt{4-x}} d x$ converges (by a similar calculation to part d.), $\int_{1}^{4} F(x) d x$ converges by the comparison method.

