2. [12 points] The graph of F(x) is given below. The function F(x) is defined for $0 \le x < 4$, and its graph is given below. As shown F(x) has a vertical asymptote at x = 4. Let G(x) be the antiderivative of F(x) with G(1) = 1.

a. [2 points] For what values of x is G(x) increasing?

Solution: Since G(x) is an antiderivative of F(x), G'(x) = F(x). Then G(x) is increasing for $F(x) \ge 0$, which is true for $0 \le x < 4$.

b. [2 points] For what values of x is G(x) concave up?

Solution: Since G'(x) = F(x), G''(x) = F'(x). Therefore, G(x) is concave up where $F'(x) \ge 0$, i.e. when F(x) is increasing. This is true for $2 \le x < 4$.

c. [2 points] Find a formula for G(x) in terms of F(x).

Solution: Since G(x) is the antiderivative of F(x) with G(1) = 1, the Construction Theorem (Second Fundamental Theorem of Calculus) gives that $G(x) = 1 + \int_1^x F(t) dt$.

d. [4 points] Is $\int_0^4 \frac{10}{\sqrt{4-x}} dx$ convergent or divergent? If it is convergent, find its exact value.

Solution: The given integral is improper (the integrand is undefined at x = 4), so we must use limits to calculate it. Substituting w = 4 - x, dw = -dx, we obtain

$$\int_{0}^{4} \frac{10}{\sqrt{4-x}} dx = \lim_{b \to 4^{-}} \int_{0}^{b} \frac{10}{(4-x)^{1/2}} dx = \lim_{b \to 4^{-}} \int_{w(0)}^{w(b)} \frac{10}{w^{1/2}} \cdot -dw$$
$$= \lim_{b \to 4^{-}} -20w^{1/2} \Big|_{w(0)}^{w(b)}.$$

In terms of x,

$$\lim_{b \to 4^{-}} \left(-20\sqrt{4-x} \right) \Big|_{0}^{b} = \lim_{b \to 4^{-}} -20\left(\sqrt{4-b} - \sqrt{4-0}\right) = -20\left(\sqrt{4-4} - \sqrt{4}\right) = 40.$$

So the integral converges.

e. [2 points] Does $\lim_{x\to 4^-} G(x)$ exist? Justify.

Solution: Yes, the given limit exists. This is because $\lim_{x \to 4^-} G(x) = \lim_{x \to 4^-} \left(1 + \int_1^x F(t)dt\right) = 1 + \int_1^4 F(x)dx$, so the existence of the given limit depends on whether or not the integral $\int_1^4 F(x)dx$ converges. We are given that $F(x) \le \frac{10}{\sqrt{4-x}}$ over $1 \le x < 4$, then $\int_1^4 F(x)dx \le \int_1^4 \frac{10}{\sqrt{4-x}}dx$

and since $\int_1^4 \frac{10}{\sqrt{4-x}} dx$ converges (by a similar calculation to part **d**.), $\int_1^4 F(x) dx$ converges by the comparison method.