6. [7 points] Let \(f(x) = \frac{1}{3x-2} \) and \(g(x) \) be the function whose graph is shown below.

![Graph](image)

a. [3 points] Let \(P_2(x) = a + b(x - 2) + c(x - 2)^2 \) be the second order Taylor polynomial approximating \(g(x) \) for \(x \) near 2. What can you say about the signs of the coefficients \(a \), \(b \) and \(c \)?

Solution: Since \(P_2(x) = g(2) + g'(2)(x - 2) + \frac{g''(2)}{2}(x - 2)^2 \), then \(a = g(2) \), \(b = g'(2) \) and \(c = \frac{g''(2)}{2} \). At \(x = 2 \) the function \(g(x) \) is positive \((g(2) > 0) \), (increasing \(g'(2) > 0 \)) and concave down \((g''(2) < 0) \). Hence \(a > 0 \), \(b > 0 \) and \(c < 0 \).

b. [4 points] Find the second order Taylor polynomial approximating \(f(x) \) for \(x \) near \(-1\).

Solution:

\[
\begin{align*}
 f(x) &= \frac{1}{3x-2} \quad f(-1) = -\frac{1}{5} \\
 f'(x) &= -\frac{3}{(3x-2)^2} \quad f'(-1) = -\frac{3}{25} \\
 f''(x) &= \frac{18}{(3x-2)^3} \quad f''(-1) = -\frac{18}{125}.
\end{align*}
\]

Hence \(P_2(x) = f(-1) + f'(-1)(x + 1) + \frac{f''(-1)}{2}(x + 1)^2 \)

\[
P_2(x) = -\frac{1}{5} - \frac{3}{25}(x + 1) - \frac{9}{125}(x + 1)^2.
\]