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8. [12 points] Let
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a. [3 points] Atz = —3, does the series converge absolutely, conditionally or diverge?

Solution: Atx = —3
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The sequence an = i is decreasing and converges to (. By the Alternating series test,
the series >~ | - +)1 converges. The convergence is not absolute since
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which diverges by p series test with p = 1. Hence the series converges conditionally at
r=—3.

b. [2 points] Using just your answer in (a), state the possible values for the radius of con-
vergence R could be. Justify.

Solution:

Solution 1: Since the center of the series is @ = —1 and the series converges at x = —3,
then R > 2.

Solution 2: Since power series converges absolutely inside its interval of convergence
and at z = —3, the series converges conditionally, then R = 2.

¢. [7 points] Find the interval of convergence of the series
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Solution:
Solution 1: Using Ratio Test
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Then the series converges if |m+1|2 < lorif =3 <z < 1. We already know from (a)

that at z = —3 the series converges If 2 = 1, then the series become ) | - +)1 which
converges by (a). Hence the interval of convergence is [—3, —1].

Solution 2: Since the radius of convergence is equal to 2, then we only need to check the
other endpoint of the interval of convergence x = 1. If = 1, then the series become

Yoo (; +)1 which converges by (a). Hence the interval of convergence is [—3, —1].
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