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5. [9 points] Consider the following power series:
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a. [4 points] Find the radius of convergence of the power series. Show all your work.

Solution:
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|x− 4| < 1 ⇔ |x− 4| < 5,

so R = 5.

b. [5 points] For which values of x does the series converge absolutely? For which
values of x does it converge conditionally?

Solution: Converges absolutely inside radius: (−1, 9).
Left endpoint: x = −1,
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converges conditionally (alternating harmonic series).
Right endpoint: x = 9,

∞∑
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diverges. So, converges conditionally for x = −1, absolutely for −1 < x < 9.
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