- **3.** [8 points] Indicate if each of the following is true or false by circling the correct answer. No justification is required.
 - **a**. [2 points] The equation $y^3 x^3 = xy$ in Cartesian coordinates can be written in polar coordinates as

$$r = \frac{\sin\theta\cos\theta}{\sin^3\theta - \cos^3\theta}.$$

False
Solution: Let
$$x = r \cos \theta$$
 and $y = r \sin \theta$, then $y^3 - x^3 = (r \sin \theta)^3 - (r \cos \theta)^3 = r^3(\sin^3 \theta - \cos^3 \theta), xy = r^2 \sin \theta \cos \theta$, then $r = \frac{\sin \theta \cos \theta}{\sin^3 \theta - \cos^3 \theta}$.

b. [2 points] If
$$g(x) = \int_1^x f(t)dt$$
, then $g(4) - g(2) = \int_2^4 f(t)dt$.

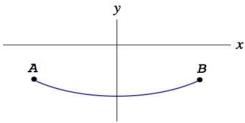
True False

Solution: Since g'(x) = f(x), then g(x) is an antiderivative of f(x). By the Fundamental Theorem of Calculus $\int_{2}^{4} f(t)dt = g(4) - g(2).$

c. [2 points] The function
$$h(x) = \int_0^{\sin x} e^{-t^2} dt$$
 has a local maximum at $x = \frac{\pi}{2}$.
True False

Solution: Since $h'(x) = e^{-(\sin x)^2} \cos x$ and $h'(\frac{\pi}{2}) = 0$ and h'(x) changes signs from positive to negative at $x = \frac{\pi}{2}$. Hence h(x) has a local maximum at $x = \frac{\pi}{2}$.

d. [2 points] The graph of the parametric equations x = f(t) and y = f'(t) for some function f(t) is shown below:



As t increases, the curve is traced from A to B.

True False

 \mathbf{D} 1

Solution: Since the graph is below the y-axis, then y = f'(t) < 0. Hence f(t) is decreasing, and since x = f(t), then as t increases, the values of x decreases. Hence the curve is traced from B to A.