8. [12 points]

 a. [4 points] Let a be a positive constant. Determine the first three nonzero terms of the
 Taylor series for

 $$f(x) = \frac{1}{(1 + ax^2)^4}$$

 centered at $x = 0$. Show all your work. Your answer may contain a.

 Solution: Using the binomial series $(1 + u)^p$ with $u = ax^2$ and $p = -4$

 $$f(x) = \frac{1}{(1 + ax^2)^4} \approx 1 + pu + \frac{p(p-1)}{2} u^2 = 1 - 4ax^2 + 10a^2 x^4$$

 b. [2 points] What is the radius of convergence of the Taylor series for $f(x)$? Your answer
 may contain a.

 Solution: Since the interval of convergence of the binomial series is $-1 < u < 1$, then
 the interval of convergence of the series for $f(x)$ is $-1 < ax^2 < 1$, or $-\sqrt{\frac{1}{a}} < x < \sqrt{\frac{1}{a}}$.

 Hence the radius of convergence is $R = \sqrt{\frac{1}{a}}$.

 c. [3 points] Determine the first three nonzero terms of the Taylor series for

 $$g(t) = \int_0^t \frac{1}{(1 + ax^2)^4} dx,$$

 centered at $t = 0$. Show all your work. Your answer may contain a.

 Solution:

 $$g(t) = \int_0^t \frac{1}{(1 + ax^2)^4} dx \approx \int_0^t 1 - 4ax^2 + 10a^2 x^4 dx = t - \frac{4}{3} ax^3 + 2a^2 x^5 \bigg|_0^t = t - \frac{4}{3} at^3 + 2a^2 t^5$$
d. [3 points] The degree-2 Taylor polynomial of the function $h(x)$, centered at $x = 1$, is

$$P_2(x) = a + b(x - 1) + c(x - 1)^2.$$

The following is a graph of $h(x)$:

What can you say about the values of a, b, c? You may assume a, b, c are nonzero. Circle your answers. No justification is needed.

Solution:

<table>
<thead>
<tr>
<th></th>
<th>Positive</th>
<th>NEGATIVE</th>
<th>Not enough information</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>POSITIVE</td>
<td>Negative</td>
<td>Not enough information</td>
</tr>
<tr>
<td>b</td>
<td>Positive</td>
<td>NEGATIVE</td>
<td>Not enough information</td>
</tr>
<tr>
<td>c</td>
<td>Positive</td>
<td>NEGATIVE</td>
<td>Not enough information</td>
</tr>
</tbody>
</table>