9. [13 points] Olive oil have been poured into the Math Department’s starfish aquarium! The shape of the aquarium is a solid of revolution, obtained by rotating the graph of $y = x^4$ for $0 \leq x \leq 1$ around the y-axis. Here x and y are measured in meters.

The aquarium contains water up to a level of $y = 0.6$ meters. There is a layer of oil of thickness 0.2 meters floating on top of the water. The water and olive oil have densities 1000 and 800 kg per m3, respectively. Use the value of $g = 9.8$ m per s2 for the acceleration due to gravity.

a. [6 points] Give an expression involving definite integrals that computes the total mass of the water in the aquarium.

$$\text{Solution: } \text{Mass}_{\text{water}} = \int_0^{0.6} \pi (\sqrt[4]{y})^2 (1000) \, dy = \int_0^{0.6} \pi \sqrt[4]{y} (1000) \, dy$$

b. [7 points] Give an expression involving definite integrals that computes the work necessary to pump all the olive oil to the top of the aquarium.

$$\text{Solution: } \text{Work}_{\text{oil}} = \int_{0.6}^{0.8} \pi (\sqrt[4]{y})^2 (800)(9.8)(1 - y) \, dy = \int_{0.6}^{0.8} \pi \sqrt[4]{y} (800)(9.8)(1 - y) \, dy$$