7. [14 points] Chickens continue to appear around you, and Franklin's army is hesitant to advance.
a. [6 points] Let $F(t)$ give the total number of chickens that have arrived after t seconds. You observe that $F(t)$ obeys the following differential equation

$$
\frac{d F}{d t}=e^{-F} t^{2}
$$

If there are initially 20 chickens, find a formula (in terms of t) for $F(t)$.
b. [4 points] A large, familiar-looking chicken steps forward from the flock and clucks, "Koo Koo Katcha!". This large chicken waddles towards Franklin following the parametric equations

$$
x(t)=\frac{\sin (\pi t)+1}{\pi} \quad y(t)=\ln (t+1)
$$

where t is the time, in seconds, after the chicken steps forward from the flock and both x and y are measured in feet. Find the chicken's speed 10 seconds after it steps forward. Include units.
c. [4 points] Franklin says, "BEEP BOOP BEEP. YOU'RE RIGHT, WHAT HAVE I BECOME?" A single robot tear falls from Franklin's robot eye. Consider the region in the $x y$-plane bounded by $y=\frac{\sin (x)}{x+2}, x=\pi, x=2 \pi$, and the x-axis. The volume of Franklin's tear is given by rotating this region around the x-axis. Write an integral giving the volume of Franklin's tear. Do not evaluate this integral.

