- **11**. [9 points] Circle all true statements.
 - **a**. [3 points] The integral $\int_0^1 \frac{1}{\sin(x)} dx$ I. converges by the comparison test because $\frac{1}{\sin(x)} \leq C$ for some constant C for $0 < x \leq 1$ and $\int_0^1 C dx$ converges.
 - II. diverges by the comparison test because $\frac{1}{\sin(x)} \ge \frac{1}{x}$ for $0 < x \le 1$ and $\int_0^1 \frac{1}{x} dx$ diverges.
 - III. diverges because $\lim_{x \to 0} \frac{1}{\sin(x)} \neq 0.$
 - IV. converges by the alternating series test because the values of $\sin(x)$ oscillate between -1 and 1.
 - **b.** [3 points] The series $\sum_{n=0}^{\infty} \frac{e^{n^2}}{n!}$ I. converges because $\lim_{n \to \infty} \frac{e^{n^2}}{n!} = 0$.
 - II. converges because factorials grow faster than exponential functions.
 - III. diverges by the ratio test.
 - IV. diverges by the comparison test because $\frac{e^{n^2}}{n!} \ge e^n$ for $n = 0, 1, 2, 3, \dots$ and $\sum_{n=0}^{\infty} e^n$ diverges.
 - c. [3 points] The differential equation $\frac{dy}{dt} = t(y-2)(\ln(y))$ defined for t > 0 and y > 0 has I. an unstable equilibrium solution at t = 0.
 - II. a stable equilibrium solution at y = 2.
 - III. a stable equilibrium solution at y = 1.
 - IV. an unstable equilibrium solution at y = 2.