2. [6 points] Let \(f(x) = xe^{-x^2} \).

a. [4 points] Find the Taylor series of \(f(x) \) centered at \(x = 0 \). Be sure to include the first 3 nonzero terms and the general term.

Solution: We can use the Taylor series of \(e^y \) to find the Taylor series for \(e^{-x^2} \) by substituting \(y = -x^2 \).

\[
e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-x^2)^n}{n!} = 1 + (-x^2) + \frac{(-x^2)^2}{2!} + \cdots + \frac{(-x^2)^n}{n!} + \cdots
\]

Therefore the Taylor series of \(xe^{-x^2} \) is

\[
x e^{-x^2} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{n!} = x - x^3 + \frac{x^5}{2!} + \cdots + \frac{(-1)^n x^{2n+1}}{n!} + \cdots
\]

b. [2 points] Find \(f^{(15)}(0) \).

Solution: We know that \(\frac{f^{(15)}(0)}{15!} \) will appear as the coefficient of the degree 15 term of the Taylor series. Using part (a), we see that the degree 15 term has coefficient \(\frac{-1}{15!} \).

Therefore

\[
f^{(15)}(0) = \frac{-15!}{15!} = -259, 459, 200
\]

3. [3 points] Determine the exact value of the infinite series

\[
1 - \frac{2}{1!} + \frac{4}{2!} - \frac{8}{3!} + \cdots + \frac{(-1)^n 2^n}{n!} + \cdots
\]

Solution: Notice that this is the Taylor series for \(e^y \) applied to \(y = -2 \). Therefore, the series has exact value \(e^{-2} \).