7. [14 points] Chickens continue to appear around you, and Franklin’s army is hesitant to advance.

a. [6 points] Let \(F(t) \) give the total number of chickens that have arrived after \(t \) seconds. You observe that \(F(t) \) obeys the following differential equation

\[
\frac{dF}{dt} = e^{-F} t^2.
\]

If there are initially 20 chickens, find a formula (in terms of \(t \)) for \(F(t) \).

Solution:

\[
\int e^F \, df = \int t^2 \, dt \\
e^F = \frac{t^3}{3} + C \\
F(t) = \ln\left(\frac{t^3}{3} + C\right)
\]

Since \(F(0) = 20 \), we see that

\[
20 = \ln(C)
\]

so \(C = e^{20} \), and

\[
F(t) = \ln\left(\frac{t^3}{3} + e^{20}\right)
\]

b. [4 points] A large, familiar-looking chicken steps forward from the flock and clucks, “Koo Koo Katcha!” This large chicken waddles towards Franklin following the parametric equations

\[
x(t) = \frac{\sin(\pi t) + 1}{\pi} \\
y(t) = \ln(t + 1)
\]

where \(t \) is the time, in seconds, after the chicken steps forward from the flock and both \(x \) and \(y \) are measured in feet. Find the chicken’s speed 10 seconds after it steps forward. Include units.

Solution:

\[
x'(t) = \cos(\pi t) \\
y'(t) = \frac{1}{t + 1}
\]

Now we plug these into the speed formula

\[
\text{Speed} = \sqrt{(x'(t))^2 + (y'(t))^2}
\]

when \(t = 10 \).

\[
\text{Speed} = \sqrt{(\cos(10\pi))^2 + \left(\frac{1}{11}\right)^2} = \frac{\sqrt{122}}{11}
\]
c. [4 points] Franklin says, “BEEP BOOP BEEP. YOU’RE RIGHT, WHAT HAVE I BECOME?” A single robot tear falls from Franklin’s robot eye. Consider the region in the xy-plane bounded by $y = \frac{\sin(x)}{x + 2}$, $x = \pi$, $x = 2\pi$, and the x-axis. The volume of Franklin’s tear is given by rotating this region around the x-axis. Write an integral giving the volume of Franklin’s tear. Do not evaluate this integral.

\[
\text{Solution:} \quad \int_{\pi}^{2\pi} \pi \left(\frac{\sin(x)}{x + 2} \right)^2 \, dx
\]