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8. [7 points| Consider the power series Z
nn

n=1
a. [2 points] At which x-value is the interval of convergence of this power series centered?

’ Solution: This power series is centered on x = —2.
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b. [5 points] The radius of convergence for the power series Z is 3. Find the

n=1
interval of convergence for this power series. Thoroughly justify your answer.

Solution: Since the radius of convergence for this power series is 3 and it is centered on
x = 2, the interval of convergence contains the open interval (—2 — 3, -2+ 3) = (=5, 1).
Now we only need to check the endpoints x = —5 and z = 1.
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Fo =1: — diverges by the p-test with p =1
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e For x = —b5: ~——— which converges by the
Z =2, ges by
alternating serles test.
Therefore, the interval of convergence for this power series is [—5, 1).

9. [5 points]
n=1

Solution: Let the n-th term be denoted by a,
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Therefore, we can use the ratio test:

= 42°.
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So this series converges for x with 422 < 1, or rather with z? < i which implies that the

radius of convergence is 1/2.
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