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8. [9 points] Consider the function g(x) defined by the power series

g(x) =
∞
∑

n=0

2n(n!)2xn

(2n)!
.

a. [6 points] Find the radius of convergence of the power series. You do not need to find
the interval of convergence.

Solution: Applying the ratio test
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Therefore the series converges whenever |x|
2 < 1, or |x| < 2. Hence the radius of conver-

gence is 2.

b. [3 points] Use the first 3 nonzero terms of the power series to estimate

∫ 1

0

g(x)− 1

x
dx.

Solution: Since g(x) = 1 + 2
2!x+ 22(2!)2

4! x2 + · · · = 1 + x+ 2
3x

2 + . . . ,
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3
.
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