1. [4 points] Suppose that the power series $\sum_{n=0}^{\infty} c_{n}(x-3)^{n}$ converges at $x=6$ and diverges at $x=-2$. What can you say about the behavior of the power series at the following values of x ? For each part, circle the correct answer. Ambiguous responses will be marked incorrect.
a. [1 point] At $x=-3$, the power series...

CONVERGES

DIVERGES
CANNOT DETERMINE
b. [1 point $]$ At $x=0$, the power series...

CONVERGES
 DIVERGES

CANNOT DETERMINE
c. [1 point] At $x=8$, the power series...

CONVERGES

DIVERGES
CANNOT DETERMINE
d. [1 point] At $x=2$, the power series...

CONVERGES

DIVERGES
CANNOT DETERMINE
2. [5 points] Determine the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{(2 n)!}{(n!)^{2}} x^{2 n}
$$

Justify your work carefully and write your final answer in the space provided. Limit syntax will be enforced.
Solution: For $n=0,1, \ldots$, let $a_{n}=\frac{(2 n)!}{(n!)^{2}}$. We have

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{(2(n+1))!}{((n+1)!)^{2}} \cdot \frac{(n!)^{2}}{(2 n)!}=\frac{(2 n+1)(2 n+2)}{(n+1)^{2}} \rightarrow 4
$$

as $n \rightarrow \infty$. Hence the radius of convergence is $\sqrt{\frac{1}{4}}=\frac{1}{2}$.

