3. [8 points] For $n=1,2,3, \ldots$ consider the sequence a_{n} given by

$$
a_{n}=\frac{-1}{2^{(n+1) / 2}} \text { if } n \text { is odd, } \quad a_{n}=\frac{1}{3^{n / 2}} \text { if } n \text { is even. }
$$

a. [2 points] Write out the first 5 terms of the sequence a_{n}.

Solution: The first five terms are

$$
-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{9},-\frac{1}{8}
$$

b. [2 points] The series $\sum_{n=1}^{\infty} a_{n}$ is alternating. In a sentence or two, explain why the Alternating Series Test cannot be used to determine whether $\sum_{n=1}^{\infty} a_{n}$ converges or diverges. Solution: The condition $\left|a_{n+1}\right|<\left|a_{n}\right|$ does not hold for all n. (It does not even hold eventually.)
c. [4 points] The series $\sum_{n=1}^{\infty} a_{n}$ converges. Show that it converges, either by using theorems about series, or by computing its exact value.
Solution: One possible answer is that the series is equal to the difference of two convergent geometric series:

$$
\sum_{k=1}^{\infty} \frac{1}{3^{k}}-\sum_{k=1}^{\infty} \frac{1}{2^{k}}=\frac{\frac{1}{3}}{1-\frac{1}{3}}-\frac{\frac{1}{2}}{1-\frac{1}{2}}=-\frac{1}{2}
$$

Another answer uses the Comparison Test; for $n=1,2, \ldots$, let $b_{n}=\frac{1}{n^{2}}$, and notice that $\left|a_{n}\right| \leq b_{n}$ eventually. Since $\sum_{n=1}^{\infty} b_{n}$ converges by the p-Test $(p=2), \sum_{n=1}^{\infty}\left|a_{n}\right|$ converges by comparison. Hence the original series converges.

