4. [5 points] The following series diverges:

$$
\sum_{n=2}^{\infty} \frac{n}{n^{2}+\ln (n)}
$$

Use theorems about infinite series to show that the series diverges. Give full justification, showing all your work and indicating any theorems or tests that you use.
Solution: One solution uses the Comparison Test. Notice that

$$
\frac{n}{n^{2}+\ln (n)} \geq \frac{n}{n^{2}+n^{2}}=\frac{1}{2 n}
$$

for all $n \geq 2$. Since $\sum_{n=1}^{\infty} \frac{1}{2 n}$ diverges by the p-Test $(p=1$), the original series diverges by comparison.
Alternatively, let $a_{n}=\frac{n}{n^{2}+\ln (n)}$ and $b_{n}=\frac{1}{n}$ for all $n \geq 2$, and notice that

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=1 .
$$

Since $\sum_{n=2}^{\infty} b_{n}$ converges by the p-Test $(p=1)$, the original series diverges by the Limit Comparison Test.
5. [5 points] Let $\alpha>0$ be a constant. Compute the first 3 terms of the Taylor series of $f(x)=\frac{x}{\sqrt{1+\alpha x}}$ about $x=0$. Write the appropriate coefficients in the spaces provided.

