8. [11 points] In this problem, we consider the parametric curve given by

$$
x=f(t) \quad y=g(t)
$$

for all t, where f and g are twice-differentiable functions. Some values of f and g and their derivatives are given in the tables below.

t	1	2	3	4	5
$f(t)$	-3	-4	-3	-1	1
$g(t)$	5	2	-2	-4	-1

t	1	2	3	4	5
$f^{\prime}(t)$	-2	0	1	3	1
$g^{\prime}(t)$	-4	-2	-1	0	2

a. [1 point] In the space provided, write an integral that gives the arc length of the parametric curve from $t=1$ to $t=5$.

Arc length $=\xrightarrow[{\int_{1}^{5} \sqrt{\left(f^{\prime}(t)\right)^{2}+\left(g^{\prime}(t)\right)^{2}} d} t]{ }$
b. [3 points] Use a midpoint sum with as many subdivisions as possible to estimate your integral from part a. Write out all the terms in your sum, and do not simplify.

Solution: The midpoint sum is $2\left(\sqrt{0^{2}+(-2)^{2}}+\sqrt{3^{2}+0^{2}}\right)$.
c. [3 points] Find the Cartesian equation for the tangent line to the parametric curve in the $x y$-plane at $t=1$.

Solution: In point-slope form, the tangent line is given by $y-5=2(x+3)$.
d. [2 points] Consider the tangent lines to the parametric curve at the t-values $t=1,2,3,4,5$. Are any of these lines perpendicular to each other? If so, list any two t-values for which the tangent lines are perpendicular. If not, write "NO."

Solution: The tangent lines corresponding to $t=2$ and $t=4$ are perpendicular.
e. [2 points] As t ranges from 1 to 5 , the corresponding part of the parametric curve intersects the line $y=x$ exactly once. Which interval contains the t-value for which the curve intersects the line $y=x$? Circle your answer. You do not need to show any work.

$$
(1,2)
$$

$$
\begin{equation*}
(3,4) \tag{1,2}
\end{equation*}
$$

