9. [12 points] Read the following parts carefully, and circle the appropriate answer(s). Some parts may have more than one correct answer.
a. [3 points] Circle the value(s) of x for which the following identity holds:

$$
2=x^{3}+\frac{x^{6}}{2!}+\frac{x^{9}}{3!}+\frac{x^{12}}{4!}+\cdots
$$

$\sqrt[3]{\ln (2)}$

$$
\sqrt[3]{\ln (3)}
$$

$$
(\ln (2))^{3}
$$

$$
e^{2^{3}}
$$

$$
\ln (\sqrt[3]{3})
$$

$$
e^{\sqrt[3]{3}}
$$

b. [3 points] Raymond Green's pet anaconda Sheela grew 5 m in length over the past month. The veterinarian says that each month, the increase in Sheela's length will be 40% of the increase the month before. How much longer (in meters) will Sheela be one year from now? Circle all that apply.

$$
\begin{array}{ccc}
\sum_{k=0}^{12} 5(0.4)^{k} & \begin{array}{|c|c|}
\hline \frac{2\left(1-(0.4)^{12}\right)}{1-0.4} 5(0.4)^{k} \\
& \frac{5\left(1-(0.4)^{12}\right)}{1-0.4}
\end{array} \frac{2\left(1-(0.4)^{13}\right)}{1-0.4}
\end{array}
$$

c. [3 points] Let $\alpha>0$ be a constant. What is the value of the convergent series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \alpha^{n}}{(2 n)!}$?

$$
\begin{array}{r}
\cos (\alpha)-1 \\
\alpha-\cos (\sqrt{\alpha})
\end{array}
$$

$$
\cos (\sqrt{\alpha})-1
$$

$$
1-\cos (\alpha)
$$

$$
1-\cos (\sqrt{\alpha})
$$

$$
\cos (\alpha)-\alpha
$$

d. [3 points] Which of the following series converge absolutely? Circle all that apply.

$$
\sum_{n=1}^{\infty} \frac{\sin ^{99}(n)}{n^{2}} \quad \sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{\ln (n)} \quad \sum_{n=2}^{\infty} \frac{8^{n}+(-1)^{n} 10^{n}}{9^{n}}
$$

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n(\ln (n))^{1.01}}
$$

$$
\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n}
$$

