11. [14 points] An auto manufacturer is testing the braking capability of one of its hybrid-electric vehicles. At regular time intervals during the experiment, the auto engineers measure the speed and the position of the car along the test track.
Let t be the number of seconds after the car begins braking.
Let $v(t)$ be the car's speed at time t, in meters per second, and let $p(t)=\int_{0}^{t} v(s) d s$.
The auto engineers are most interested in the time period $0 \leq t \leq 40$, when the car's acceleration is always negative but increasing.
The velocity measurements taken during this time period are given in the table below.

t (seconds)	0	10	20	30	40
$v(t)(\mathrm{m} / \mathrm{s})$	111	60	25	5	0

a. [3 points] Consider the four approximations of the definite integral $\int_{0}^{40} v(t) d t$ given by RIGHT(4), $\operatorname{LEFT}(4), \operatorname{TRAP}(4)$, and MID(4). Rank these five quantities in order from least to greatest by filling in the blanks below with the options I-V.
I. $\int_{0}^{40} v(t) d t$
II. RIGHT(4)
III. LEFT(4)
IV. TRAP (4)
V. $\operatorname{MID}(4)$
\qquad
b. [3 points] Write out all the terms of the LEFT(4) approximation of $\int_{0}^{40} v(t) d t$.
c. [4 points] Let $h(x)$ be the gasoline fuel efficiency of the test vehicle, in liters per hectokilometer (i.e. liters per 100 km) when the car is traveling at a speed of $x \mathrm{~m} / \mathrm{s}$.
i. Suppose a formula for h is given by $\quad h(x)=2.3+0.097 x$.

Compute the value of $\int_{0}^{40} h^{\prime}(v(t)) \cdot v^{\prime}(t) d t$.

Answer: $\int_{0}^{40} h^{\prime}(v(t)) \cdot v^{\prime}(t) d t=$

This is a continuation of the problem from the previous page.
ii. Let

$$
K=\int_{0}^{40} h^{\prime}(v(t)) \cdot v^{\prime}(t) d t
$$

(Note that K is the value you computed in part c(i).) Circle the phrase below that best completes the practical interpretation of K that begins "During the last 40 seconds of the experiment..."
I. the vehicle consumes $|K|$ liters of fuel per hectokilometer.
II. the rate of change of the vehicle's fuel efficiency is K liters per hectokilometer per second.
III. the vehicle consumes $|K|$ liters of fuel.
IV. the total change in the rate of change of fuel in the vehicle's gas tank is $1 / K$ liters per second.
V. the total change in the vehicle's fuel efficiency is K liters per hectokilometers.
d. [4 points] The energy density of the car's battery is a function of time, $E(t)$, which can be multiplied by the car's position function $p(t)$ in order to compute the battery's charge. Suppose that $E(0)=1, E(40)=0.89, E^{\prime}(0)=-0.0028$, and $E^{\prime}(40)=-0.025$. Use your answer to part \mathbf{b} above to estimate the value of

$$
\int_{0}^{40}\left(v(t) E(t)+p(t) E^{\prime}(t)\right) d t
$$

Hint: What is $p^{\prime}(t)$?

