2. [8 points] For this problem, consider the family of polar curves described for each positive integer $n \ge 1$ by

$$r = \frac{\cos(2n\theta)}{n}$$

for $0 \le \theta \le 2\pi$.

a. [2 points] Consider the polar curve described by $r = \cos(2\theta)$ for $0 \le \theta \le 2\pi$. (Note that this is the case of n = 1.) Find all values of θ between 0 and 2π for which the curve $r = \cos(2\theta)$ passes through the origin.

Answer: $\theta =$ ______ **b.** [3 points] For $n \ge 1$, find all *x*-intercepts of the polar curve $r = \frac{\cos(2n\theta)}{n}$. Your answer(s) may involve *n*.

Answer: $x = _$

c. [3 points] For $n \ge 1$, let A_n be the arclength of the polar curve $r = \frac{\cos(2n\theta)}{n}$ for $0 \le \theta \le 2\pi$. Write, but do not evaluate, an expression involving one or more integrals that gives the value of A_n .