8. [11 points] Imagine that a one pound ball is attached to a spring. This ball is allowed to move forward and backward on a table, but not up and down (or side to side). When the spring is not stretched at all, we say that the ball is at its starting position. Let x be the displacement of the ball from its starting position in the forward/backward direction. (The value of x is positive if the ball has moved forward from its starting position and negative if the ball has moved backward from its starting position.)
a. [4 points] Let $F(x)$ be the magnitude of the force, measured in pounds, that the spring exerts on the ball when the ball has been pulled x feet from its starting position.
Suppose $F(x)=5 x$.
i. Which of the following best estimates the work, in foot-pounds, needed to move the ball a very small distance Δx feet forward from a position x ? Circle one choice.
I. 5
II. $5 x$
III. $2.5 x^{2}$
IV. $5 \Delta x$
V. $5 x \Delta x$
VI. $2.5 x^{2} \Delta x$
ii. Use your answer to part i. to write an expression involving one or more integrals that gives the total work needed to move the ball from its starting position forward a distance of one half of one foot (i.e. 6 inches). Then compute the value of your integral (either by hand or using your calculator). Include units on your answer.

Answer: Integral Expression: \qquad

Numerical Answer (with units):
b. [4 points] After stretching the spring as described above, you release it from a starting position of $x=1 / 2$. The ball oscillates backwards and forwards (in the x-direction), and its position $x=x(t)$ satisfies the differential equation $x^{\prime \prime}+5 x=0$. Note that $x^{\prime \prime}=\frac{d^{2} x}{d t^{2}}$. For what values of A, B, and k will the function

$$
x(t)=A \sin (k t)+B \cos (k t)
$$

be a solution to the differential equation $x^{\prime \prime}+5 x=0$ with the initial conditions $x(0)=1 / 2$ and $x^{\prime}(0)=0$?

Answer: $A=$ \qquad and $\quad B=$ \qquad and $\quad k=$ \qquad
c. [3 points] Using the particular solution that you found in part \mathbf{b}, find the first time $t>0$ when the ball reaches the position $x=0$.

Answer: $t=$

