2. [8 points] For this problem, consider the family of polar curves described for each positive integer $n \ge 1$ by

$$r = \frac{\cos(2n\theta)}{n}$$

for $0 \le \theta \le 2\pi$.

At Origin

a. [2 points] Consider the polar curve described by $r = \cos(2\theta)$ for $0 \le \theta \le 2\pi$. (Note that this is the case of n = 1.) Find all values of θ between 0 and 2π for which the curve $r = \cos(2\theta)$ passes through the origin.

 $\Leftrightarrow r=0 \iff \cos(2\theta) = 0 \\ \Leftrightarrow 2\theta = m\pi + \frac{\pi}{2} \text{ for some integer } m$ ⇒ = m = + = for some integer Answer: $\theta =$ **b.** [3 points] For $n \ge 1$, find all x-intercepts of the polar curve $r = \frac{\cos(2n\theta)}{n}$. Your answer(s) may involve n. y= rsino 20 LACO In that in Cos (2nmT and cose Answer: x =

c. [3 points] For $n \ge 1$, let A_n be the arclength of the polar curve $r = \frac{\cos(2n\theta)}{n}$ for $0 \le \theta \le 2\pi$. Write, but do not evaluate, an expression involving one or more integrals that gives the value of A_n .

$$A_{n} = \int_{0}^{2\pi} \sqrt{F(\theta)^{2} + F'(\theta)^{2}} d\theta$$

where $F(\theta) = \frac{1}{n} \cos(2n\theta)$
 $F'(\theta) = -2\sin(2n\theta)$
Answer: $A_{n} = \int_{0}^{2\pi} \frac{1}{n^{2}} \cos(2n\theta) + 4\sin^{2}(2n\theta) d\theta$